Gas Hydrate Potential Along The Eastern Continental Margin of India
Author: Maheswar Ojha, Ranjana GhoshDOI: doi.org/10.70279/bmj-v5-i2-10278
Cited by 5
Bottom simulating reflector (BSR) is the main marker for the identification of gas hydrate in the subsurface sediments from seismic data. Based on BSRs mapped on the seismic sections, two national drilling, coring and logging programs were conducted in 2006 and 2015, respectively, which discovered a huge amount of gas hydrate along the Indian continental margin. The first Indian National Gas Hydrate Program Expedition 1 (NGHP-01) found gas hydrate as fracture-filled and pore-filled in fine-grained shallow sediments of Krishna-Godavari, Mahanadi and Andaman offshore basins. NGHP-02 was conducted in the deeper water parts of Krishna-Godavari and Mahanadi offshore basins to find gas hydrate deposits in the coarse-grained sediments. Well log and core data collected during the second expedition in 25 sites reveal a huge amount of gas hydrates distributed as pore-fill, fracture-fill and both pore- and fracture-fill (mixed) morphologies in sand and silt rich sediments. Rock physics modelling of sonic velocity and resistivity log shows that about 80-90% of the pore spaces are filled with gas hydrates at some depths, which are closely matching with available pressure core measurements. Lateral distributions of gas hydrate are delineated by integrating the well logs and seismic data. However, for the proper delineation and quantification of gas hydrate, characterisation of the reservoir is very important in terms of lithology, porosity, permeability, anisotropy and the morphology of gas hydrate distribution. Full waveform inversion of seismic data, advanced rock physics modelling and neural network technique, etc. are very useful for assessing the gas hydrate reservoirs. Based on certain assumptions, the estimated reserves in Indian offshore is about 1900 trillion cubic meters and 1% production can serve India’s energy requirement for a few decades. However, the estimated reserves should be further refined incorporating more drilling and coring data.
Item | Value |
---|---|
Serial | 3 |
Article PDF | Download |
Total Citation | Cited by 5 |
How to Cite | |
Article Page Views | 523 |
Article Downloads | 2 |
Article Volume | Volume 05 |
Article Issue | Issue 02 |
Article DOI | doi.org/10.70279/bmj-v5-i2-10278 |
Article Conference Acronym | |
Manuscript Number | |
Status | Show |
Article Slug | gas-hydrate-potential-along-the-eastern-continental-margin-of-india |
Article Keyword | NGHP, Krishna-Godavari, Mahanadi, Andaman, Gas hydrate, Rock physics, Well log, Seismic. |
Article Entry Time | 10:49:34 |
Article References | Ahlbrandt, T. S., 2002. Future petroleum energy resources of the world. International Geological Review, 44, 1092–1104. Arun, K. P., Sain, K. and Kumar, J, 2019. Application of constrained AVO inversion: 2-D modelling of gas hydrates and free gas in Mahanadi basin, India. JNGSE 78, 103287. Boswell, R. and Collett, T. S., 2011. Current perspectives on gas hydrate resources. Energy Environmental Science 4, 1206–1215. Boswell, R., Yoneda, J. and Waite, W. F., 2019. India National Gas Hydrate Program Expedition 02 summary of scientific results: evaluation of natural gas-hydrate-bearing pressure cores. Mar. Pet. Geol. 108, 143–153. Collett, T. S., et al., 2008. NGHP Expedition 01, 2006. Initial Reports, Directorate General of Hydrocarbons, Noida and Ministry of Petroleum & Natural Gas, India. Collett, T. S., et al., 2019. India National Gas Hydrate Program Expedition 02 summary of scientific results: gas hydrate systems along the eastern continental margin of India. Mar. Pet. Geol. 108, 39–142. Cook, A. E. and Goldberg, D., 2008. Extent of gas hydrate filled fracture planes: Implication for in situ methanogenesis and resource potential, Geophys. Res. Lett. 35, L15302. Dai, J., Snyder, F., Gillespie, D., Koesoemadinata, A. and Dutta, N., 2008. Exploration for gas hydrate in the deepwater, northern Gulf of Mexico: Part I. A seismic approach based on geologic model, inversion, and rock physics principles. Mar. Petro. Geol. 25, 830-844. Dallimore, S. R. and Collett, T. S., 2005. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin 585, 36. Dewangan, P., Mandal, R., Jaiswal, P., Ramprasad, T. and Sriram G., 2014. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin, J. Mar. Pet. Geol. 58, 356- 367. Dvorkin, J., Nur, A., Uden, R. and Taner, T., 2003. Rock physics of gas hydrate reservoirs. Leading Edge 22, 842-846. Ecker, C., Dvorkin, J. and Nur, A., 1998. Sediments with gas hydrate: Internal structure from seismic AVO. Geophysics 63, 1659-1669. Gassman, F., 1951. Elasticity of porous media: Uber der Elastizitat poroser Media. Vierteljahrsschrift der Naturforschenden Gesell-schaft 96, 1-23. Ghosh, R., Sain, K. and Ojha, M., 2010. Effective medium modeling of gas hydratefilled fractures using sonic log in the Krishna–Godavari basin, offshore eastern India. J. Geophys. Res. 115, B06101. Ghosh, R., Sain, K. and Ojha, M., 2010. Estimating the amount of gas hydrate using effective medium theory: a case study in the Blake Ridge. Mar. Geophys. Res. 31, 29- 37. Hancock, S., Collett, T. S., Dallimore, S.R., Satoh, T., Huenges, E. and Henninges, J., 2005. Overview of thermal stimulation production test results for the Japex/JNOC/GSC Mallik 5L-38 Gas Hydrate Research Well. In: Dallimore, S. R., Collett, T. S. (Eds.), Scientific results from Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin, 585. Helgerud, M., Dvorkin, J., Nur, A., Sakai, A. and Collett, T. S., 1999. Elastic wave velocity in marine sediments with gas hydrates: effective medium modelling. Geophys. Res. Lett. 26, 2021-2024. Holder, G. D., Kamath, V. A. and Godbole, S. P., 1984. The potential of natural gas hydrates as an energy source. Annual Review of Energy 9, 427-445. Holland, M. E., Schultheiss, P. J. and Roberts, J. A., 2019. Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India. Mar. Pet. Geol. 108, 407–423. Hsiung, K. H., Saito, S., Kanamatsu, T., Sanada, Y., Yamada, Y. and NGHP Expedition 02 JAMSTEC Science Team, 2019. Regional stratigraphic framework and gas hydrate occurrence offshore eastern India: core-log-seismic integration of National Gas Hydrate Program Expedition 02 (NGHP-02) Area-B drill sites. Mar. Pet. Geol.108, 206–215. Jaiswal, P., AI-Bulushi, S. and Dewangan, P., 2014. Logging-while-drilling and wireline velocities: Site NGHP-01-10, Krishna-Godavari Basin, India. J. Mar. Petrol. Geol. 58, 331-338. Jakobsen, M., Hudson, J. A., Minshull, T. A. and Singh, S. C., 2000. Elastic properties of hydrate?bearing sediments using effective medium theory, Geophys. Res. 105, 561– 577. Jana, S., Ojha, M. and Sain, K., 2015. Gas hydrate saturation from heterogeneous model constructed from well log in Krishna–Godavari Basin, Eastern Indian Offshore. Geophys. J. Int. 203, 184–194. Jana, S., Ojha, M., Sain, K. and Srivastava, S., 2017. An approach to estimate gas hydrate saturation from 3-D heterogeneous resistivity model: A study from KrishnaGodavari basin, Eastern Indian offshore. Mar. Petrol. Geol. 79, 99-107. Joshi, A. K., Sain, K. and Pandey, L., 2019. Gas hydrate saturation and reservoir characterization at sites NGHP-02-17 and NGHP-02-19, Krishna Godavari Basin, eastern margin of India. Mar. Pet. Geol. 108, 595-608. Kastner, M., Kvenvolden, K. A. and Lorenson, T. D., 1998. Chemistry, isotopic composition and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth planet. Sci. Lett. 156, 173-183. Klauda, J. B. Sandler, S. I., 2005. Global distribution of methane hydrate in ocean sediment. Energy & Fuels 19, 459–470. Kumar, P., et al., 2014. Geologic implications of gas hydrates in the offshore of India: Krishna–Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala–Konkan Basin. Mar. Petrol. Geol. 58, Part A, 29-98. Kurihara, M., Funatsu, K., Ouchi, H., Masuda, Y., Yasuda, M., Yamamoto, K., Numasawa, M., Fujii, T., Narita, H., Dallimore, S. and Wright, F., 2008. Analysis of the JOGMEC/ NRCAN/Aurora Mallik gas hydrate production test through numerical simulation. Proc. 6th Int. Conf. Gas Hydrates, Vancouver. Kvenvolden, K. A., 1998. Methane hydrate—A major reservoir of carbon in the shallow geosphere?. Chem. Geol. 71, 41–51. Kwon, T. H., Cho, G. C. and Santamarina, J. C., 2008. Gas hydrate dissociation in sediments: pressure-temperature evolution. Geochemistry, Geophysics, Geosystems 9 (Q03019). Lee, M. W. and Collett, T. S., 2009. Gas hydrate saturations estimated from fractured reservoir at site NGHP-01-10, Krishna-Godavari Basin, India. J. Geophys. Res. 114, 1– 13 B07102. Makogon, Y. F., Holditch, S. A. and Makogon, T. Y., 2007. Natural gas hydrates — a potential energy source for the 21st Century. JPSE 56, 14–31. Milkov, A.V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Science Review 66, 183–197. Ojha, M. and Ghosh, R., 2021. Assessment of gas hydrate using pre-stack 1 seismic inversion in Mahanadi Basin, offshore eastern India. Interpretation 9 (2), 1-42. Ojha, M., 2012. Quantitative Assessment of Gas Hydrate from Seismic Data. Lambert Academic Publishing. Ojha, M., and Sain, K., 2008. Appraisal of gas hydrate/free-gas from VP/VS ratio in the Makran accretionary prism. Mar. Pet. Geol. 25, 637–644. Ojha, M., and Sain, K., 2013. Quantification of gas hydrate and free gas in the Andaman offshore from downhole data: Current Science 105, 512–516. Ojha, M., Sain, K. and Minshull, T. A., 2010. Assessment of gas hydrate saturations in Makran accretionary prism using the offset dependence of seismic amplitudes: Geophysics 75, C1–C6. Ojha, M., Sen, M. K. and Sain, K., 2016. Use of split spread configuration of marine multichannel seismic data in full waveform inversion, Krishna-Godavari basin, India. J. Seis. Expl 25, 359-373. Pandey, L., Sain, K. and Joshi, A. K., 2019. Estimate of gas hydrate saturations in the Krishna-Godavari basin, eastern continental margin of India, results of expedition NGHP-02. Mar. Pet. Geol. 108, 581-594. Riedel, M., Collett, T. S., Kumar, P., Sathe, A. V. and Cook, A., 2010. Seismic imaging of a fractured gas hydrate system in the Krishna–Godavari Basin offshore India. Mar. Pet. Geol. 27, 1476–1493. Sain, K. and Gupta, H. K., 2008. Gas hydrates: Indian scenario. J. Geol. Soc. Ind. 72, 299–311. Sain, K., Ojha, M., Satyavani, N., Ramadass, G. A., Ramprasad, T., Das, S. K. and Gupta, H. K., 2012. Gas-hydrates in Krishna-Godavari and Mahanadi basins: New data, J. Geol. Soc. Ind. 79(6), 553-556. Sain, K., Rajesh, V., Satyavani, N. Subbarao, K. V. and Subrahmanyam, C., 2011. Gashydrate stability thickness map along the Indian continental margin. Mar. Petrol. Geol. 28 (10), 1779-1786. Saito, S., Hsiung, K. H., Sanada, Y., Moe, K., Hamada, Y., Nakamura, Y., Wu, H. Y., Shinmoto, Y., Yamada, Y. and NGHP Expedition 02 JAMSTEC Science Team, 2019. Gas hydrate occurrence and distribution controlled by regional geological structure off eastern India: estimates from logging-while-drilling in Area-B, National Gas Hydrate Program Expedition 02 (NGHP-02). Mar. Pet. Geol. 108, 216–225. Satyavani, N., Sen, M. K., Ojha, M. and Sain, K., 2013. Azimuthal anisotropy from OBS observations in Mahanadi offshore, India. Interpretation, 1, T187–T198. Shankar, U. and Riedel, M., 2013. Heat flow and gas hydrate saturation estimates from Andaman Sea, India. Mar. Petrol. Geol. 43, 434-449. Shankar, U., Riedel, M., 2014. Assessment of gas hydrate saturation in marine sediments from resistivity and compressional-wave velocity log measurements in the Mahanadi Basin, India. Mar. Petro. Geol. 58,265-277. Singh, A., Ojha, M. and Sain, K., 2020. Predicting lithology using neural networks from downhole data of a gas hydrate reservoir in the Krishna–Godavari basin, eastern Indian offshore. Geophys. J. Int. 220, 1813–1837. Sloan, E. D., 1998.Clathrate Hydrate of Natural Gases. Marcel Dekker, New York. Sriram, G., Dewangan, P. and Ramprasad, T., 2014. Modified effective medium model for gas hydrate bearing, clay-dominated sediments in the Krishna–Godavari Basin. Mar. Pet. Geol. 58, 321-330. Subrahmanyam, C., Reddi, S. I., Thakur, N. K., Rao, T. G. and Sain, K., 1998. Gashydrates-a synoptic view. Journal of the Geological Society of India 52 (5), 497- 512. Satyavani, N., Sain, K., Lall, M. and Kumar, B. J. P., 2008. Seismic attribute study for gas hydrates in the Andaman Offshore India. Mar. Geophys. Res. 29 (3), 167-175. Takahisa, I., 2005. Overview of production test results for the Mallik 2002 gas hydrate production research well program. J. Jpn. Inst. Energy 84, 106–111. Tsuji, Y., et al., 2009. Methane-hydrate occurrence and distribution in the Eastern Nankai Trough, Japan: findings of the Tokai-oki to Kumano-nada methane-hydrate drilling program. In: Collett, T.S., Johnson, A., Knapp, C., Boswell, R. (Eds.), Natural Gas Hydrates — Energy Resource Potential and Associated Geologic Hazards: AAPG Memoir 89, 228–249. Wang X., Sain, K., Satyavani, N., Wang, J., Ojha, M. and Wu, M. S., 2013. Gas hydrates saturation using geostatistical inversion in a fractured reservoir in the KrishnaGodavari basin, offshore eastern India. Mar. Pet. Geol., 45, 224-235. Yadav, U. S., Shukla, K. M., Ojha, M, Kumar, P. and Shankar, U., 2019. Assessment of gas hydrate accumulations using velocities derived from vertical seismic profiles and acoustic log data in Krishna-Godavari Basin, India. Mar. Pet. Geol., 108, 551–56. Yun, T. S., Lee, C., Lee, J. S., Bahk, J. J., Santamarina, J. C., 2011. A pressure corebased characterization of hydrate-bearing sediments in the Ulleung Basin, Sea of Japan (East Sea). J. Geophys. Res. 116, B02204. |