Temperature Dependence of Electrical Properties of Biopolymer Gel with Increasing Polymer Concentration
Author: Nusrat JahanDOI: doi.org/10.70279/bmj-v3-i1-1089
Click here to view citation data
This study is aimed to investigate the electrical properties of biopolymer gel as functions of polymer concentration and temperature. To perform this study, gellan gum was used as a biopolymer, which is a bacterial polysaccharide. The gellan polymer in solution dissociates into polyelectrolyte and it forms polyelectrolyte gel under a suitable condition. We studied the ionic conductivity variation of this gellan gel electrolytes with varying polymer concentration from 0.5 wt.% to 3.5wt.% which exhibit a slight increase in ionic conductivity at room temperature. In addition to different polymer concentration, we investigated the effect of temperature dependent electrical property from 300 C to 800 C and the Arrhenius plot obtained from this temperature dependence of conductivity revealed a stronger network with increasing polymer concentration.
Item | Value |
---|---|
Serial | 3 |
Article PDF | Download |
Total Citation | Click here to view citation data |
How to Cite | |
Article Page Views | 433 |
Article Downloads | 0 |
Article Volume | Volume 03 |
Article Issue | Issue 1 |
Article DOI | doi.org/10.70279/bmj-v3-i1-1089 |
Article Conference Acronym | |
Manuscript Number | |
Status | Show |
Article Slug | temperature-dependence-of-electrical-properties-of-biopolymer-gel-with-increasing-polymer-concentration |
Article Keyword | Biopolymer, Bacterial Polysaccharide, Polyelectrolyte Gel, Gellan Gum, Conductivity |
Article Entry Time | 15:39:30 |
Article References | Andrade, J.R., Raphael, E. and Pawlicka, A., Plasticised pectin-based gel electrolytes. Electrochimica Acta, 54 no 26, (2009): 6479-6483. Atkin, N., Abeysekera, R.M., Kronestedt-Robards, E.C. and Robards, A.W., Direct visualization of changes in deacylated Na+ gellan polymer morphology during the sol-gel transition. Biopolymers, 54 no 3, (2000): 195-210. Bosco, M., Miertus, S., Dentini, M. and Segre, A.L., The structure of gellan in dilute aqueous solution. Biopolymers, 54 no 2, (2000): 115-126. Chandrasekaran, R., Puigjaner, L.C., Joyce, K.L. and Arnott, S., Cation interactions in gellan: an X-ray study of the potassium salt.Carbohydrate Research, 181, (1988): 23-40. Ferris, Cameron & in het Panhuis, Marc., Gel-carbon nanotube composites: The effect of carbon nanotubes on gelation and conductivity behaviour. Soft Matterno5,(2009): 1466-1473. Gunning, A.P., Kirby, A.R., Ridout, M.J., Brownsey, G.J. and Morris, V.J., Investigation of gellan networks and gels by atomic force microscopy. Macromolecules, 29 no 21, (1996): .6791-6796. Halim, N.F.A., Majid, S.R., Arof, A.K., Kajzar, F. and Pawlicka, A., Gellan gum-LiI gel polymer electrolytes. Molecular Crystals and Liquid Crystals, 554 no1, (2012): 232-238. Jansson, P.E., Lindberg, B. and Sandford, P.A., Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydrate Research, 124 no 1, (1983): 135-139. Kadir, M.F.Z., Majid, S.R. and Arof, A.K., Plasticised chitosan–PVA blend polymer electrolyte based proton battery. Electrochimica Acta, 55 no 4, (2010): 1475-1482. León, P.G. and Rojas, A.M., Gellan gum films as carriers of l-(+)-ascorbic acid. Food research international, 40 no 5, (2007): 565-575. Machado, G.O., Ferreira, H.C.A. and Pawlicka, A., Influence of plasticiser contents on the properties of HEC-based solid polymeric electrolytes. Electrochimica Acta, 50 no 19, (2005): 3827-3831. Marcondes, R.F., D'Agostini, P.S., Ferreira, J., Girotto, E.M., Pawlicka, A. and Dragunski, D.C., Amylopectin-rich starch plasticised with glycerol for polymer electrolyte application. Solid State Ionics, 181 no 13, (2010): 586-591. Milas, M. and Rinaudo, M., The gellan sol-gel transition. Carbohydrate Polymers, 30 no 2, (1996): 177-184. Miyoshi, E., Takaya, T. and Nishinari, K., Gel—sol transition in gellan gum solutions. II. DSC studies on the effects of salts. Food Hydrocolloids,8 no 6, (1994): 529-542. Moritaka, H., Fukuba, H., Kumeno, K., Nakahama, N. and Nishinari, K., Effect of monovalent and divalent cations on the rheological properties of gellan gels. Food Hydrocolloids, 4 no 6, (1991): 495-507. Moritaka, H., Nishinari, K., Nakahama, N. and Fukuba, H., Effects of potassium chloride and sodium chloride on the thermal properties of gellan gum gels. Bioscience, biotechnology, and biochemistry, 56 no 4, (1992): 595-599. Ogawa, E., Conformational transition of polysaccharide sodium-gellan gum in aqueous solutions. Macromolecules, 29 no 15, (1996): 5178-5182. Ogawa, E., Matsuzawa, H. and Iwahashi, M., Conformational transition of gellan gum of sodium, lithium, and potassium types in aqueous solutions. Food Hydrocolloids, 16 no 1, (2002): 1-9. Ogawa, E., Takahashi, R., Yajima, H. and Nishinari, K., Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions. Food Hydrocolloids, 20 no 2, (2006): 378-385. O'Neill, M.A., Selvendran, R.R. and Morris, V.J., Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydrate Research, 124 no 1, (1983): 123-133. R. Brown, C. Hutchison, E. Hughes, R. Kellogg, and W. Murray Electrical characterisation of gel collected from shark electrosensors. Phys. Rev. E 65 no 06, (2002): 1903 Tako, M., Sakae, A. and Nakamura, S., Rheological properties of gellan gum in aqueous media. Agricultural and biological chemistry, 53 no 3, (1989): 771-776. |